Search results for " accretion"

showing 10 items of 122 documents

Unveiling the environment and faint features of the isolated galaxy CIG 96 with deep optical and HI observations

2018

Context. Asymmetries in atomic hydrogen (HI) in galaxies are often caused by the interaction with close companions, making isolated galaxies an ideal framework to study secular evolution. The AMIGA project has demonstrated that isolated galaxies show the lowest level of asymmetry in their HI integrated profiles compared to even field galaxies, yet some present significant asymmetries. CIG 96 (NGC 864) is a representative case reaching a 16% level. Aims. Our aim is to investigate the HI asymmetries of the spiral galaxy CIG 96 and what processes have triggered the star-forming regions observed in the XUV pseudo-ring. Methods. We performed deep optical observations at CAHA1.23m, CAHA2.2m and V…

galaxies: spiralHIERARCHICAL SATELLITE ACCRETIONmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsI.01 natural sciences7. Clean energyAsymmetryAMIGA SAMPLElaw.inventionTelescopelaw0103 physical scienceskinematics and dynamics [galaxies]DARK-MATTER SUBSTRUCTURESurface brightness010303 astronomy & astrophysicsStellar evolutionComputingMilieux_MISCELLANEOUSevolution [galaxies]galaxies: kinematics and dynamicsLOPSIDED SPIRAL GALAXIESmedia_commonindividual: NGC 864 [galaxies]Physicsradio lines: galaxiesSpiral galaxy010308 nuclear & particles physicsgalaxies: individual: NGC864Astronomy and AstrophysicsDISK GALAXIESAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Galaxygalaxies [radio lines]RINGSTIDAL STREAMspiral [galaxies][SDU]Sciences of the Universe [physics]Space and Planetary ScienceGASAstrophysics of Galaxies (astro-ph.GA)structure [galaxies]galaxies: structureDIGITAL SKY SURVEYCirrusGalaxies: Individual: NGC 864galaxies: evolutionAstronomy & astrophysics
researchProduct

First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

2019

The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring rad…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizongalaxies: jetAstronomyStrong gravitational lensingblack hole physicsjets [galaxies]galaxies: individualAstrophysicsaccretion accretion disk01 natural sciencesGeneral Relativity and Quantum CosmologyGalaxies: individual (M87)accretion010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion disksaccretion diskshigh angular resolution [techniques]Accretion disks(MHD)Astrophysics - High Energy Astrophysical PhenomenaGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Compact stargalaxies: individual: M87magnetohydrodynamics (MHD)Techniques: high angular resolutionGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)0105 earth and related environmental sciencesEvent Horizon TelescopeSupermassive black holeAstronomy and AstrophysicsBlack hole physicsAstrophysics - Astrophysics of Galaxiesblack hole physicBlack holeRotating black holeSpace and Planetary Sciencemagnetohydrodynamics: MHDGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)magnetohydrodynamics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

QPO emission from moving hot spots on the surface of neutron stars: a model

2009

We present recent results of 3D magnetohydrodynamic simulations of neutron stars with small misalignment angles, as regards the features in lightcurves produced by regular movements of the hot spots during accretion onto the star. In particular, we show that the variation of position of the hot spot created by the infalling matter, as observed in 3D simulations, can produce high frequency Quasi Periodic Oscillations with frequencies associated with the inner zone of the disk. Previously reported simulations showed that the usual assumption of a fixed hot spot near the polar region is valid only for misalignment angles relatively large. Otherwise, two phenomena challenge the assumption: one …

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodEquatorFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion discs instabilities MHD stars: magnetic fields stars: neutron stars: oscillationsAstrophysics01 natural sciencesAccretion (astrophysics)Neutron starAccretion rateSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesPolarAstrophysics::Solar and Stellar AstrophysicsMagnetohydrodynamic driveAstrophysics::Earth and Planetary AstrophysicsQuasi periodic010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

2015

We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surroun…

Settore FIS/05 - Astronomia E AstrofisicaN/AAccretio: accretion diskStars: pre-main sequenceX-rays: stars
researchProduct

Spin down of an Accreting Millisecond Pulsar, the case of XTE J1814‐338

2007

We report about a timing analysis performed on the data gathered by RXTE of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst. The first full orbital solution of this binary system is given. Moreover the evolution of the phase of the pulsed emission reveals that the rotating compact object is spinning down at a rate ν˙ = (-6.7 +/- 0.7) × 10-14 Hz/s, while accreting. This behavior is considered as a result of the braking effect due to the interaction between the magnetosphere and the inner parts of the accretion disc, in the case of an accretion rate low enough to allow the expansion of the magnetospheric radius to the corotation limit. In this context we derive an esti…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyMagnetosphereContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsCompact starPulsars X-ray binaries Accretion and accretion disksSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsAIP Conference Proceedings
researchProduct

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28

2017

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …

accretion accretion discAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEphemeris01 natural sciencesstars: neutronQuadratic equationPulsar0103 physical sciencesTorque010303 astronomy & astrophysicsGroup delay and phase delayHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsneutron; X-rays: binaries; X-rays: individual: GRO J1744-28 [accretion accretion disc; stars]Static timing analysisAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individual: GRO J1744-28X-ray pulsarMonthly Notices of the Royal Astronomical Society
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

2010

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or mor…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhotonSpectrometerAstrophysics::High Energy Astrophysical PhenomenaElectron shellFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyRelativistic diskSpectral lineaccretion accretion disks black hole physics instrumentation spectrographs methods analytical X-rays binariesNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSpectroscopyAstrophysics::Galaxy Astrophysics
researchProduct

A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

2015

Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…

SerpensAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion disk01 natural sciencesSpectral linestars: neutronSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesEmission spectrum010303 astronomy & astrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and Astrophysicsprofiles; stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [accretion accretion disks; line]Astronomy and AstrophysicK-lineX-rays: binarieBlack holeNeutron starline: profileSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

2013

(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesField strengthX-rays: starsAstrophysicsstars: pre-main sequence01 natural sciencesmagnetohydrodynamics (MHD)pre-main sequence X-rays: stars [accretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars]010305 fluids & plasmasSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsaccretion disksAstronomy and AstrophysicsPlasmashock wavesAccretion (astrophysics)Magnetic fieldT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesPhysics::Space PhysicsOblique shockAstrophysics::Earth and Planetary Astrophysicsaccretion accretion disks instabilities magnetohydrodynamics (MHD) shock waves stars: pre-main sequence X-rays: stars[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct